Crystal Chemistry of the $La_{2-v}Ln_vCuO_4$ (Ln = Pr, Nd) Systems

A. MANTHIRAM AND J. B. GOODENOUGH

Center for Materials Science and Engineering, ETC 5.160, University of Texas at Austin, Austin, Texas 78712-1084

Received March 9, 1990; in revised form April 27, 1990

An investigation of the value of the room temperature crystallographic tolerance factor t at which stability of the La₂CuO₄ T-tetragonal structure becomes unstable relative to the Nd₂CuO₄ T'-tetragonal structure in the systems La_{2-y} Ln_yCuO₄, Ln = Pr or Nd, has led to the discovery of a new T"-tetragonal phase. It has a powder X-ray diffraction pattern like that of the T' phase, but with a slightly larger c parameter than that obtained by extrapolation from the T' phase field. Its occurrence as nearly a line phase at $y \approx 0.5$ suggests cation ordering within a Ln–O layer; with a larger size difference between La³⁺ and the Ln³⁺ ion, interlayer ordering occurs to give either a two-phase sample T/O + T' or the hybrid T* phase. © 1990 Academic Press. Inc.

Introduction

All the known copper-oxide superconductors have intergrowth structures consisting of superconductively active layers alternating with inactive layers. The simplest structures of this class are illustrated by the prototype *p*-type and *n*-type superconductors $La_{2-v}Sr_vCuO_4$ and $Nd_{2-v}Ce_vCuO_4$.

 La_2CuO_4 has a T-tetragonal structure at high temperatures and undergoes a displacive transition to orthorhombic symmetry below a transition temperature T_t ; we refer to this structure type as the T/O phase. In the T-tegragonal structure, the active layer is a single CuO₂ plane consisting of a square Cu array bridged by 180° Cu–O–Cu bonds; the inactive layer is composed of two (001) rocksalt LaO planes in which the oxygen atoms coordinate the Cu along the *c*-axis and the La atoms are coordinated by four oxygens of a neighboring CuO_2 plane as well as by five oxygens within the La-O layers. A cooperative tilting of the CuO₆ octahedra about a [110] axis reduces the symmetry 0022-4596/90 \$3.00

from tetragonal to orthorhombic and bends the Cu–O–Cu bonds from 180° (1).

Nd₂CuO₄ has a T'-tegragonal structure at all temperatures. Here also the active layer is a single CuO₂ plane; but a displacement of the *c*-axis oxygen of the T-phase to the tetrahedral interstices between the two planes of Nd³⁺ ions creates a fluorite-type inactive layer (2). In the T' phase the copper have only four square-coplanar oxygen neighbors within a CuO₂ sheet.

Stabilization of an intergrowth structure requires a matching of the bonds across the interface between adjacent layers. In the T phase of La_2CuO_4 , a measure of the bond-length matching is the tolerance factor

$$t = (La-O)/\sqrt{2}$$
 (Cu-O). (1)

Ideal matching corresponds to t = 1; but it can only occur at one temperature because of the different thermal expansions of the La-O and Cu-O bond lengths. A larger La-O thermal expansion means that t decreases with decreasing temperature. Already at room temperature, La₂CuO₄ has a

Copyright © 1990 by Academic Press, Inc. All rights of reproduction in any form reserved.

t = 0.869 < 1 as calculated from the sums of the empirical room temperature ionic radii (3). A t < 1 means a bond-length mismatch that places the CuO_2 sheets under compression and the LaO layers under tension. These stresses are partially relieved by ordering of the Cu(II)-3d hole into the antibonding $\sigma_{x^2-y^2}^*$ orbitals of Cu-3 $d_{x^2-y^2}$ and $O-2p_{\sigma x}$, $2p_{\sigma y}$ parentage. This ordering accounts for the large tetragonal (c/a > 1) distortion of the CuO_6 octahedra; it is already accounted for in the empirical Cu(II) room temperature ionic radius, which means the CuO₂ layers would remain under compression at and below room temperature if the structure were to remain tegragonal. In fact, the cooperative tilting of the CuO₆ octahedra in the orthorhombic distortion below $T_{\rm t}$ occurs to relieve the bond-length mismatch (4, 5).

Replacement of La³⁺ by smaller lanthanide ions, Ln = Pr-Gd, reduces t < 1 sufficiently that nature relieves the mismatch by forming the T' phase. Placement of all the *c*axis oxygen into a single plane of lanthanide tetrahedral sites via the *c*-axis stacking sequence

$$-CuO_2 - Nd - O_2 - Nd - CuO_2 -$$
(2)

causes an expansion of the basal plane; this expansion places the CuO_2 sheets under tension, at least in the case of Ln = Pr or Nd if not for Ln = Gd, and the T' phase remains tegragonal to lowest temperatures.

As pointed out elsewhere (4), the existence of a compressive stress on the CuO₂ planes in the T phase allows *p*-type doping with either an interstitial oxygen in the La–O layer or substitution of La³⁺ by a larger M²⁺ ion, but it inhibits *n*-type doping; a tensile stress on the CuO₂ planes in the T' phase allows *n*-type doping, but it inhibits *p*-type doping.

In a mixed-lanthanide system $La_{2-y}Ln_{y-1}$. CuO₄, there is no doping of the CuO₂ sheets. For the smaller lanthanides Ln = Sm-Dy, particularly for Tb and Dy with $y \approx 1$, a new hybrid structure is formed (6, 7); in this phase, which is designated the T*-tetragonal structure (6), the inactive Ln-O layers alternate between the (001) rocksalt LaO layers of the T structure and the fluorite-type layers of the T' structure. Neutron-diffraction data (8) for a T* sample La_{1.25}Dy_{0.75}. CuO₄ has verified that the smaller Ln^{3+} ions are ordered into the fluorite-type layers as required for bond-length matching.

The phase relationships in the systems $La_{2-\nu}Ln_{\nu}CuO_{4}$ with larger Ln = Pr and Nd atoms have not been investigated systematically. We report an investigation into the values of t at which the transition from T to T' occurs. A previous investigation (9) of these systems was made before the discovery (6) of the T^* structure; it reported an abrupt transition, with no two-phase region specified, from the T/O to the T' phase at y= 0.75 and 0.25, respectively, for Ln = Prand Nd. With the smaller size difference between La³⁺, Pr³⁺, and Nd³⁺, we anticipated there would be no T* phase, only two solid-solution ranges, one with the T/O and the other with the T' structure, in which the Ln³⁺ ions are randomly distributed. Of particular interest to us was the value of t at which a two-phase (T + T') compositional range occurs on increasing y. In this investigation, we discovered a new T" phase between the T and T' phase fields; this new T" phase could not be doped either *p*-type or *n*-type by cation substitution.

Experimental

La_{2-y}Ln_yCuO₄ (Ln = Pr-Gd) samples were obtained by firing the required quantities of intimately mixed La₂O₃, Ln₂O₃, or Pr₆O₁₁ and CuO at 950°C for 15 hr; the product was ground, pelletized, and refired at 1060°C for 15–30 hr. The pellets were finally annealed in 1 atm O₂ at 900°C for 4 hr followed by stopping at 700, 500, 350, and 250°C each for about 12 hr before cooling to 100°C. Doping of La_{2-y}Ln_yCuO₄with Sr²⁺ or Ce⁴⁺ was carried out in a similar way. All products were characterized by X-ray powder diffraction recorded with a Philips diffractometer and Cu K α radiation. The average formal oxidation state of Cu and the oxygen content were obtained by iodometric titration (10). All the La_{2-y} Ln_yCuO_{4+x} samples annealed in 1 atm O₂ showed the presence of an excess oxygen content x; the total oxygen content of these samples remained constant at 4.02 \pm 0.005. At these concentrations, the excess oxygen does not appear to oxidize the CuO₂ sheets.

Results and Discussion

The variations with the tolerance factor t or y of the room temperature lattice parameters for the La_{2-v}Nd_vCuO₄ system are shown in Fig. 1. The orthorhombic T-La₂ CuO_4 structure is found for $0 \le y \le 0.35$ and $t \ge 0.8658$. The orthorhombic distortion increases with y due to an increasing tensile stress (decreasing t) introduced by the smaller Nd³⁺ ions in the rocksalt layer. A fluorite-type arrangement of the Ln–O layers for $y \ge 1.2$ gives a stable bond-length matching with the CuO_2 sheets; therefore the $T'-Nd_2CuO_4$ structure is found for 1.2 $\leq y \leq 2.0$ where a $t \leq 0.8585$ would have been required of the T phase. The lattice parameters, c/a ratio, and cell volume decrease monotonically with y in both the T and T' structures. However, discontinuities in the parameters are associated with the T to T' phase transition. The T' structure has a smaller c-axis and c/a ratio and a larger a-axis and cell volume compared to the T structure. The stronger electrostatic repulsion between the O^{2-} ions in the tetrahedral sites of the fluorite layer causes an increase in the *a* parameter that is not fully compensated by the decrease in the c-axis introduced by the movement of the *c*-axis oxygen into the tetrahedral sites in the T' structure. For a given t, the T' structure therefore adopts a larger volume than the T structure.

FIG. 1. Variation of room temperature lattice parameters with t or y for the system $La_{2-y}Nd_yCuO_4$ annealed in 1 atm O_2 ; t values were obtained with the ninecoordinated radius for La^{3+} and Nd^{3+} for all values of y. For comparison, the a and b parameters for the T/O phases are plotted by dividing the actual orthorhombic parameters by $\sqrt{2}$.

The intermediate region $0.35 \le y \le 1.2$ shows interesting phase relationships. The X-ray diffraction patterns (Fig. 2) for the region $0.6 \le y \le 1.1$ reveal the presence of two similar tetragonal phases with only a small difference in their lattice parameters (Fig. 2b). The one with the smaller lattice parameters is like the T' phase found for y= 1.2 (Fig. 2a); the one with the larger lattice parameters corresponds to the single phase found with $y \approx 0.5$ (Fig. 2c). The X-ray diffraction pattern for the single phase occurring in the narrow range $0.5 \le y \le 0.55$ is similar to that of the T' phase except for slightly larger c parameter than is obtained by extrapolation from the T' phase field. However, the occurrence of a two-phase region between the T' phase occurring be-

FIG. 2. X-ray powder diffraction patterns for La_{2-y} Nd_yCuO₄: (a) y = 1.2 (T' phase) (b) y = 0.8 (T' and T" phases), and (c) y = 0.5 (T" phase).

tween $1.2 \le y \le 2.0$ and the phase appearing between $0.5 \le y \le 0.55$ indicates that the phase found at y = 0.5 is different from that found at y = 1.2. We designate the new phase at $0.5 \le y \le 0.55$ the T"-tetragonal phase. Its structure has yet to be determined from single-crystal or neutron-diffraction data. Nevertheless it can be distinguished readily from a T* phase. We therefore presume that any ordering between Nd³⁺ and La³⁺ ions in the T" phase occurs within a Ln-O layer, not between layers. The fact that the T" phase appears to be a line phase with a probably limited solid-solubility range $0.5 \le y \le 0.55$ (Fig. 1) is compatible with a cation ordering within the Ln-O layers of a T" phase. In contrast to Singh *et al.* (9), the compositional range $0.35 \le y \le 0.5$, which corresponds to $0.8658 \ge t \ge 0.8645$, was found to be two-phase (T/O + T").

Remarkably, pellets of compositions 0.5 $< v \leq 1.1$ that had been guenched from 1060°C to room temperature in air disintegrate spontaneously into a fine powder within a few minutes at room temperature in air. This phenomenon was rapid for compositions in the middle of the T' + T'' twophase region with $y \approx 0.8$; it becomes slower and less pronounced upon moving to either side toward the limit of the two-phase region. This observation indicates that, at the firing temperature (~1060°C), disordering of the cations and/or of the O^{2-} ions within the Ln-O layers stabilizes a single-phase material via a large entropy term in the free energy; upon cooling to lower temperatures, ionic ordering within the Ln-O layers can occur at room temperature, probably giving a "spinodal" decomposition into the phases T' and T'' (11). The room temperature decomposition into T' and T" phases was always observed for compositions in the range $0.6 \le y \le 1.1$ even if the phase was quenched directly into liquid nitrogen from 1060°C.

When our manuscript was in preparation, a preprint was received from Bringley *et al.* (12) discussing the phase relationship in the $La_{2-y}Ln_yCuO_4$ systems. Although our results are in substantial agreement, we differ from their observation/interpretation for the region $0.6 \le y \le 1.1$ with Ln = Nd. They claim the formation of a mixture of T' and metastable T* phases for $y \approx 1.0$ if prepared around 950°C for 3 days. Similar experiments were subsequently carried out by us for y = 1.0 at 950°C for 2 days; they resulted in the formation of predominantly T' and T" phases with traces of T, but not T*. Anneal-

FIG. 3. Phase diagrams for the (a) doped $La_{1.85-y}$ Nd_ySr_{0.15}CuO₄ and $La_{1.85-y}$ Nd_yCe_{0.15}CuO₄ systems and (b) undoped La_{2-y} Nd_yCuO₄ system.

ing for 1 week in air at 950 or at 1100°C resulted in the vanishing of the T-phase component, but the presence of both T' and T" phases persisted. The larger Nd³⁺ ions in a fluorite-type arrangement would give a much larger stretching in the basal plane than the La³⁺ ions in the rocksalt arrangement; only smaller Ln³⁺ ions such as $Gd^{3+}-Dy^{3+}$ give a stretching of the fluorite layer comparable to that in a LaO rocksalt layer and hence the good bond-length matching between fluorite and rocksalt layers required to stabilize the T* structure. These considerations rule out the occurrence of a T^{*} phase for LaNdCuO₄ or LaPrCuO₄.

The new T" phase having a larger *a* parameter would keep the CuO₂ sheets under tension and the Ln-O layers under compression. Therefore it is expected that the T" phase cannot be doped *p*-type. Accordingly

FIG. 4. Variation of room temperature lattice parameters with t or y for the system $La_{2-y}Pr_yCuO_4$ annealed in 1 atm O_2 ; t values were obtained with the ninecoordinated radius for La^{3+} and Pr^{3+} for all values of y. For comparison, the a and b parameters for the T/O phases are plotted by dividing the actual orthorhombic parameters by $\sqrt{2}$.

our attempts to synthesize $La_{2-y-z}Nd_ySr_z$. CuO₄ with 0.858 < t < 0.864 resulted in the formation of undoped T' and hole-doped Tphases (Fig. 3). On the other hand, the larger tensile stress on the CuO₂ sheets of the T" phase can be expected to allow *n*-type doping. However, all our attempts to synthesize $La_{2-y-z}Nd_yCe_zCuO_4$ with 0.858 < t < 0.864 resulted in an undoped T-phase and an electron-doped T'-phase (Fig. 3) rather than electron-doped T" and/or T" + T'. This result is consistent with cation ordering in the T" phase. Doping would tend to retain a disordered cation array.

Investigation of the $La_{2-y}Pr_yCuO_4$ system showed the phase relationships of Fig. 4; they are similar to those found for La_{2-y} Nd_yCuO₄ (Fig. 1). If the phase boundaries for the T/O and T' phase fields are determined by the tolerance factor t of Eq. (1), then the T/O and the T' phase boundaries would be expected to move to higher values of v if all the Pr is present as Pr^{3+} , which has a larger ionic radius than Nd³⁺. On the other hand, the T" phase would remain at $y \approx 0.5$ if cation ordering within the Ln–O layers plays a role in stabilization of the phase. Indeed, the T" phase remains at $y \approx 0.5$ and the T/O to T'' + T/O phase boundary moves to higher y value as expected. However, the T' to T' + T" phase boundary does not appear to be shifted. This observation may simply indicate that the t parameter is not a critical determinant of the T' + T" twophase domain since it applies strictly only to the T/O phase.

Our attempts to synthesize similar T" phases in the systems $La_{2-y}Ln_yCuO_4$ (Ln =Sm or Gd) by choosing a y corresponding to a $t \approx 0.864$ resulted in the formation of a two-phase mixture of the T/O and T' phases. It appears that a larger size difference between the La³⁺ and Ln^{3+} ions does not favor an intralayer cation ordering, but an interlayer cation separation.

Acknowledgments

This research was supported by the National Science Foundation and the Texas Advanced Research Program.

References

- J. M. LONGO AND P. M. RACCAH, J. Solid State Chem. 6, 526 (1973); B. Grande, H. Müller-Buschbaum, and M. Schweizer, Z. Anorg. Allg. Chem 423, 120 (1977).
- 2. H. MÜLLER-BUSCHBAUM AND W. WOLL-SCHLAGER, Z.Anorg. Allg. Chem. 414, 76 (1975).
- 3. R. D. SHANNON, Acta Crystallogr., Sect A 32, 751 (1976).
- 4. J. B. GOODENOUGH, Supercond. Sci. Technol. 3, 26 (1990).
- A. MANTHIRAM AND J. B. GOODENOUGH, "Advances in the Synthesis and Reactivity of Solids" (T. E. Mallouk, Ed), in press, Jai Press, Greenwich, CT (1990).
- H. SAWA, S. SUZUKI, M. WATANABE, J. AKIMI-TSU, H. MATSUBARA, H. WATABE, S. UCHIDA, K. KOKUSHO, H. ASANA, F. IZUMI, AND E. TAKAYA-MA-MUROMACHI, *Nature (London)* 337, 347 (1989).
- T. KENJO AND S. YAJIMA, Bull. Chem. Soc. Japan.
 50, 2847 (1977); S.-W. Cheong, Z. Fizk, J. D. Thompson, and R. B. Schwarz, Physica C **159**, 407 (1989); Y. K. Tao, Y. Y. Sun, J. Paredes, P. H, Hor, and C. W. Chu, J. Solid State Chem. **82**, 176 (1989).
- P. LIGHTFOOT, SHIYOU PEI, J. D. JORGENSEN, X.-X. TANG, A. MANTHIRAM, AND J. B. GOODE-NOUGH, unpublished.
- K. K. SINGH, P. GANGULY, AND C. N. R. RAO, Mater. Res. Bull. 17, 493 (1982).
- A. MANTHIRAM, J. S. SWINNEA, Z. T. SUI, H. STEINFINK, AND J. B. GOODENOUGH, J. Amer. Chem. Soc. 109, 6667 (1987).
- C. N. R. RAO AND K. J. RAO, "Phase Transitions in Solids: An Approach to the Study of the Chemistry and Physics of Solids," p. 133. McGraw-Hill, New York (1978).
- 12. J. F. BRINGLEY, S. S. TRAIL, AND B. A. SCOTT, J. Solid State Chem., in press.